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Laws of production and laws of algebra:
Humbug II

Anwar  Shaikh

The theoretical basis

Recent debates on capital theory have focused
on the notion of capital as a factor of production,
which along with labor, crrn  hc IHC~  to c>xpltrin
the tlistrihrrtion  c~f’inc~rme in crrpitulivt  ri~onom,v
Though the intricate point and counterpoint of
the controversy often obscure this simple fact, it
has become increasingly clear that what is at
stake in the current debate is in essence the
same issue with which the classical economists,
particularly Ricardo, grappled - that of the divi-
sion of income between wages and profits. The
argument thus rages around dcsc~ripti~v eco-
nomic theory, whose aim it is to represent the
workings of a competitive capitalist economy. In
a sense this is a return to relevance, since much
of modern mathematical economics has stu-
diously concerned itself, not with descriptive.
but instead with normative theory, such as the
study of optimal and efficient growth paths, etc..
(Lancaster, 1968, pp. 9-10).

In neoclassical theory, the model of pure ex-
change occupies a central position, for it illus-
trates simply and elegantly the fundamental
truths of the paradigm, truths which any more
complex representations may modify but cer-
tainly cannot undermine.’ Thus, in the model of
pure exchange. trading begins with selfish indi-
viduals each having an arbitrarily determined
initial endowment of goods, and proceeds to a
final state in which no one individual can im-
prove his or her basket of commodities without
making someone else worse off. Such a situation

modity - other things being equal -the lower its
relative price.

The next step in the analysis requires its ex-
tention to the case of production. Initial endow-
ments are now assumed to contain not just con-
sumer goods but also means of production, such
as land, machines, raw materials, etc.; in addi-
tion, since the game cannot continue unless
every individual has at least some wealth, it is
generally assumed that each and every initial en-
dowment includes potentially saleable labor ser-
vices. By assumption, the ultimate objective of
every individual is consumption: means of pro-
duction and labor services, however, are not
directly consumable. At this point, therefore,
production is introduced as a roundabout way of
consumption, a process in which inputs are
transformed into outputs. In order to translate
any given initial endowment into the production
possibilities inherent in it. neoclassical econom-
ics commonly relies on the assumption of a well
behaved neoclassical production function, one
for each commodity produced.

Each individual then faces three basic
methods of arriving at some preferred final allo-
cation, methods which he or she is free to use in
any combination permitted by the initial endow-
ment and consistent with the utility function.
First, he can trade any of the cnn<;llmer good< or
means of production in his possession for other
goods he desires; second, he may rent out the
SP~I~I’I~~~S of the mcAns  n f  prndllrtinn  he own<,
and/or rent out his labor power: and third, if his

is known as a pareto-optimal allocation, and it
implies a set of final exchange ratios between
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initial endowment so permits, he may choose to
become a producer, renting and/or buying
means of production and labor-power and com-
bining these with the elements of his initial en-
dowment to turn out one or more commodities
via a well-behaved neoclassical production func-
tion. Ruled only by his enlightened self-interest,
which dictates that more is better, and con-
strained only by his native abilities and initial en-
dowment, he is assumed to eventually arrive at
some most “efficient” combination of the
trader-rentier-producer modes, thereby a t -
taining his personal optimum in the form of some
final allocation.

Because preferences (utility functions) and
initial endowments are purunzeters  of the analy-
sis, the whole structure of equilibrium is ruled
by them, so that once again, the forces of con-
sumer sovereignty lead us ineluctably to
Pareto-optimality . Equilibrium relative prices
are once again sccrrc’ity  prices, a term which now
covers the prices of consumption goods, the
wage rate for labor services, and the rental 2nd
sale prices of means of production (Hershleifer,
1970).

Under carefully fashioned assumptions in-
volving well-behaved utility and production
functions, these sorts of models are determinate
in the sense that one or more possible equilibria
can be shown to exist. But the model, as out-
lined here, contains no reference to the uniform
rate of profit which is supposed to characterize
competitive capitalism. The explanation of this
rate of profit is what (descriptive) neoclassical
capital theory is all about. Moreover, given that
the basic parables of the theory have already
identified the equilibrium price of every good or
service as a scarcity price, one that reflects its
individual and social scarcity, the task that con-
fronts the theory is clear: somehow, the rate of
profit too must be explained as the scarcity price
of some thing with both the price and quantity of
this thing to be mutually determined in some
market. This market, it turns out, is the capital
market, in which demand is determined by indi-
vidual’s preferences for present versus future
consumption - their “taste for investment”
(Dewey, 1965) and supply is determined by the
technological structure. The price that suppos-
edly emerges from this interaction is the r’rrte of’
interest, the scarcity index of the quantity of
capitnl, and with the addition of a few more con-
venient assumptions, the rate of profit is made
equal to this rate of interest. Zj’these wnditions
cun he mcrintuined,  then, it is argued, the distri-
bution of inmrn~~  in cl capitcrlist soc’kt~ is a c’on-
sequence of the eJj?cient ulloccrtinn of’resorrrces;
in fact, within this wondrous construct, capital-
ism itself represents the resolution of one of Na-

ture’s most problematical gifts - the “natural”
selfishness of every individual!

Scarcity pricing parables and the aggregate
production function

Traditionally, several models have been used to
extend scarcity pricing to the theory of distribu-
tion. The simplest, and by far the most widely
used in both the theoretical and empirical litera-
ture, is the aggregate production function model.
Sllch a mndel,  we are tnld,  is an aggregated ver-
sion of the general equilibrium model outlined
above, constructed as an empirically useful
approximation, clnd  strongly  supported by the
dutct. Even the sophisticates, the so-called
high-brows of neoclassical theory, at one time,
took this and similar parables seriously:

.  .  . In various places I have subjected to de-
tailed analysis certain simplified models in-
volving only a few factors of production . . .
[These] simple models or parables do. I think.
have considerable heuristic value in giving in-
sights into the fundamentals of interest theory
in all of its complexities. (Samuelson, 1962, p.
1Y4)

The originators of the “production func-
tion” theory of distribution (in the static
sense, where I still think it should be taken
fairly seriously) were Wicksteed, Edgeworth,
and Pigou. (Hicks, 1965, p. 293, footnote 1)
Though aggregate or surrogate production

function models occupy the bulk of the theoreti-
cal and empirical literature on the distribution of
income in a capitalist society, the essential char-
acteristic of this and all other parables of neo-
classical theory concerns their attempt to ex-
plain the wage rate and the rate of profit as scar-
city prices of labor and capital, respectively,
determined in the final analysis by efficiency
considerations. It was precisely this techno-
cratic apologia for capitalism which became the
target of the neo-Keynesian counterattack of
the 196Os,  during the so-called Cambridge cap-
ital controversies.

One of the most striking, and for neoclassical
economics most devastating, results of the
above capital controversies was the proof that
~lrnq’ version of the neoclassical parable, in which
the rate of profit varied inversely with the quan-
tity of capital and the wage rate inversely with
the quantity of labor (so that each at least be-
haved like a scarcity price) was valid in static
conditions (f lrnd  only I++  prices in ull possible
competitive equilibria were proportional to labor
values.” Thex  I e~~lls,  llu  t;ful+z,  apply, irllc/r
nli~~,  to that particular version of the parable
known as the aggregate (or surrogate) produc-
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tion function, in which the wage rate and the rate
of profit not only move inversely to the quan-
tities of labor and capital, respectively, but are
also equal to and determined by their respective
marginal products. Considering that the neoclas-
sical pal-a&s  have their-  ul-igins  in a ‘ ‘consciwus
counterrevolution ~~uinst  the classical school,
against Ricardo and Marx in particular” (Dobb,
1970, p. l), and above all, against the labor
theory of value in ~1~24’  form, it is gratifying to dis-
cover that  in the end these parables themselves
depend on the simple labor theory of value. The
irony is inescapable.

These and other inimical results were not lost
on the faithful. As awareness of the internal in-
consistencies of neoclassical theory began to
grow, many were led to abandon it. But for
others, hope died hard; and hope, it seems, lay
in the data. “As a neoclassical theorist, 1 can
only reply  that the relevant question is what is
relevant: should we make our predictions on the
basis of what Mrs. Robinson has called perverse
technical behavior OY OYZ  the &sis of  relations
that ha\?e  been repeatedly ohser~~d’?”  (Fer-
guson,  1971, p. 254, emphasis added)

What has been “repeatedly observed,” it is
argued, is the empirical efficacy of aggregate
production functions. In spite of the very
strongest theoretical requirements for their
existence, the use of such functions flourishes -
the current justification being that their empiri-
cal basis appears strong. In study after study,
empirically derived functions appear to strongly
support both the constancy of returns to scale
and the equality of marginal products with
“factnr  rewards”: in particlllar,  for hnth time-
series and cross-section studies (within any one
country), the Cobb-Douglas function appears to
dominate the field,

For the neoclassical faithful, these results rep-
resent their salvation; no matter what those crit-
ics from Cambridge say, the “real” world, it
would seem, is neoclassical.  Or is  i t ‘?  The
answer is simple: no. The  so-trilled  empiriccxl
strength of  aggreg:crte  production is UM illusion,
due not to some mystical laws of production, but
instead, to some rather prosaic laws of algebra.
To see why, however, we must first examine
how production functions are estimated.

The empirical
functions

basis of aggregate production

The most popular methods of estimating ag-
gregate production functions have been the
single equation least squares method and the
factor shares method (Walters, 1963). The

former can be most generally described as fitting
a function of the form3  Q(t) = F[K(t), L(t), t]  to
observed data while the latter consists of NsslIM-
il?~  that aggregate marginal products of capital
and labor are equal to their respective unit
c;al  rlings  ard  1her1  ubirig  this  assumplivri  tu bpt;c-
ify structural coefficients. In general, for both
time series and cross-section data, the Cobb-
Douglas function wins out: “the sum of coeffi-
cients usually approximate closely to unity”
(thus implying constant returns to scale), with
the additional bonus of a close “agreement
between the labor exponent and the share of
wages in the value of output” (thus support-
ing aggregate marginal productivity theory)
(Walters, 1963, p. 27).

In a recent paper, Franklin Fisher concedes
that the requirements “under which the produc-
tion possibilities of a technically diverse
economy can be represented by an aggregate
production function are far too stringent to be
believable” (Fisher, 1971, p. 306). He proposes
therefore to investigate the puzzling uniformity
of the empirical results by means of a simulation
experiment: each of N industries in this simu-
lated economy is assumed to be characterized
by a microeconomic Cobb-Douglas production
function relating its homogeneous output to its
homogeneous labor input and its own distinc?
machine stock. The conditions for theoretical
aggregation are studiously violated, and the
question is, how well, and under what circum-
stances, does an aggregate Cobb-Douglas func-
tion represent the data generated? In such an
economy, the aggregate wage share is often vari-
able over time, so that in general an aggregate
Cobb-Douglas would not be expected to give a
good fit. What seems to surprise Fisher, how-
ever, is that when the wage share happens coin-
cidentally to be roughly constant, a Cobb-
Douglas production function will not only fit the
data well but also  provide a good explanation of
wages, “15 wri  tllougCi  t/w 11 ue  t e/utionhhip3  ut-c’

.fbr .fhc-l  m yielding IL1111 aggregate Cobb -
Dougl~rs,  ” sug,qesting  that “the Izieli*  thtit  the
constancy c?f’lrrt!!c~r’s  shru-e  is due  tcj  tke  presence
of  Ltn  uggvegate  Cobb-Douglns  p r o d u c t i o n

jiln~*tion  is mistuken.  CclIrscrtion  runs the other
wuy  Lltnd  the upparent  success of aggvegclte
Cobb  --L)o~~glm  production  jknctions  is due to
the relative  constancy of’ kuhor’s  shut-e. ”
(Emphasis added.) (Fisher, 1971, p. 306).

It is obvious that so long as aggregate shares
are roughly constant, the appropriate economet-
ric test of aggregate neoclassical production and
distribution theory requires a Cobb-Douglas
function. Such a test would then apparently cast
some light on the degree of returns to scale
(through the sum of the coefficients), and the
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applicability of aggregate marginal productivity
theory (through the comparison of the labor and
capital exponents with the wage and profit
shares, respectively). What is not obvious, how-
ever, is that so long as aggregate shares are con-
stant, an aggregate Cobb-Douglas function
having apparently “constant returns to scale”
will always provide an exact fit, for any data
whatsoever. In addition,  irnder-  fairly  t~asourahle
c.ondiliclri,~, 3llcI1  II ~firnclion  \l’ill  seem  ulso  to
possess “marginal  prodwts  eyrtrrl  to respecti\*e
jkctor rewards,  ” thus  seeming  to jiistlfi  neo-
classiccll  crggregutc  distt-ihution  thcvty. T h e s e
propositions, it will be shown, are muthematicctl
consequences of constant shares, and it will be
argued that the puzzling uniformity of the empir-
ical results is due in fact to this law of algebra
and not to some mysterious law of production.
In fact, in order to emphasize the independence
of thcsr;  r(;sults fl-om  any laws of y~uductiun,  an
illustration is provided in the form of the rather
implausible data of the Humbug economy, for
even data such as this is perfectly consistent
with a Cobb-Douglas function having “constant
returns to scale,” “ neutral technical change,”
and satisfying “marginal productivity rules,” so
long as shares are constant.

Laws of algebra

Let us begin by separating the aggregate data in
any time period into output data (Q, the value of
output), distribution data (W, 7~~  wages and prof-
its, respectively), and input data (K, L, the index
numbers for capital and labor, respectively).
Then we can write the following aggregate iden-
tity for any time t:

Q(t)  = W(t)  + r(t) (1)
Given cm?

always write:
index numbers K(t),  L(t),  we  c a n

q(t) = w(t) + r(t)k(t) (2)

where  y(t)  and kit)  are the output-labor  and
capital -labor ratios, respectively, and w(t) =
W(t)/L(t),  r(t)  = n-(t)/K(t)  are the wage and
profit rate<, respectively  The ahove  eqllation  is
therefore the fundamental identity relating out-
put, distribution, and input data. Defining the
share of profits in output as s, and the share of
wages as 1 - s, we can differentiate identity 2 to
arrive at identity 3 (time derivatives are denoted
by dots, and the time index, t, is dropped to sim-
plify notation):

Dividing through by y,

By definition, the profit  and wage shares,
respectively, are

so that  WC may write,

4-B : B
9

= z + s i where - =
B (1 - .s)p + 21  (3)

It is important to note that all relations given
so far are allures  true for unq’  aggregate data at
all, irrespective of production or distribution
conditions.

Suppose now we are faced with particular
data which for some unspecified reasons exhibit
constant shares, so that J = p (d cun~kml).  Re-
membering that the dotted variables are time
derivatives (cj  =  dq/dt, etc.), we can immedi-
ately integrate the identity (3):

In  y = ; dt + ,6 In k + 1~  c,,

where for convenience the constant of integra-
tion is wlitlerl  as In c‘,,.  Rewriting, we have,

y = [exp  (1 g dt)]  c,k”  = [B]coklc

where by definition

B = exp

Equation (4) is strikingly reminiscent of a con-
stant returns to scale aggregate Cobb-Douglas
production function with L\  shift paramctcr  B.
But in fact, it is not a pvodrrction  function at all,
but merely an algebraic relationship which
always holds for trny  output-input data Q,  K, L ,
even data which could not conceivably come
from any economy, so long as the distribution
data exhibits a constant ratio. Furthermore,
since the B/B term in identity (3) is a weighted
average of the rates of  change  of w  and Y,
respectively, it seems empirically reasonable to
expect  that  measures  of K,  L would give SL
capital-labor ratio k which is weakly correlated
with B/B.  With measures for which the above is
true,  B/B rnLrl>  be  consider-ed  to he  primarily  u
finnction  0f‘  time, so that B will also be solely a
function of time. Then we can write

q = B(t)  [cok”l (5)

and since y = Q/L and /\ = K/L,  we get

Q = B(t) [c,K”L’-~] (54



The algebraic relationship just given has sev-
cral  intcrcsting  propcrtics. First, it is homoge-
neous to the first degree in K and L. Second,
since p = s = rk/q, the partial derivatives
aQ/JK, aQ/fX are equal to Y, w, respectively.
And third, the effect of time is “neutral,” as
incorporated in the shift parameter B(t). What
we have, actually, is mathematically identical to
a constant returns to scale Cobb-Douglas pro-
duction function having neutral technical change
and satisfying marginal productivity “rules.”
And yet, as we have seen, uny  production dutu
whatsoever can  hr  presented NS being “gen -
erated ” by such aJunction,  so long as shares are
constant and the measures of capital and labor
such that k is uncorrelated with B/B. Therefore,
precisely because (5a)  is a mathematical rela-
tionship, holding true for large classes of data as-
sociated with constant shares, it cannot be inter-
preted as a production function, or any produc-
tion relation at all. If anything, it is a distributive
relation, and sheds little or no light on the under-
lying production relationships.4  In fact, since the
constancy of shares has been taken as an empiri-
cal datum throughout, equation (5a) does not
shed much light on any theory of distribution
either.

I emphasized earlier that the theoretical basis
of aggregate production function analysis was
extremely weak. It would seem now that its
apparent empirical strength is no strength at all,
but merely a statistical reflection of an algebraic
relationship. For the neoclassical old guard, the
retreat to data is really a rout.

Applications

It is obvious that one can apply Equation (5a) in
many ways. The section that follows will reex-
amine Solow’s  famous paper on measuring tech-
nical change. The “humbug production func-
tion” section will present a numerical example
to illustrate the generality of Equation (5a).  The
section on Fisher’s simulation experiments will
extend the preceding analysis; and the final sec-
tion will touch briefly on cross-section produc-
tion function studies.

Technical change and the aggregate production
function: Solow.  In what is considered a “semi-
nal paper” (Solow,  1957),  Robert Solow  intro-
duced in 1957 a novel method for measuring the
contribution of technical change to economic
growth. Since that time several refinements of
Solow’s  original calculations have been estab-
lished, all aimed at providing better measures of
labor and capital by taking account of education,

vintages of machines, etc., but
preach  has remained unchanged.

the ap-

Solow’s  approach is by now a familiar one.
Equation (6) expresses the assumption of a con-
stant returns to scale aggregate production func-
tion, with the parameter A(t) expressing the as-
sumption of neutral technical change.

(f3

For such a function, the marginal product of
capital is dq/dk  = A(t) [df/dk]  = [q/f] [df/dk],
since A(t) = q/f  By assumption, this marginal
product is equal to the rate of profit r:

& q dfz=fz=’

and by rewriting, we
the profit share s:

can express this in terms of

df k rk--=-=
dkf q

s share of profit in output

Solow’s  expressed purpose was to distinguish
between shifts of the assumed production func-
tion (due to “technical change”) and move-
ments along it (due to changes in the capital-
labor ratio, k).”

Figure 5.1 illustrates the geometric assump-
tion implicit in Solow’s  paper. Points A, and B,
are observed points, at times to  and tl, respec-
tively, while B,  represents the “adjusted” point
after “neutral technical change” has been re-
moved. Thus points A0  and BO  lie on the “under-
lying production function.”

Algebraically, in terms of Equation (6),  the
aim of his procedure is to partition output per
worker 4  into A, the technical change shift
parameter, andf(k),  the “underlying production
function” to which 1 just referred. In order to do
this, Solow  first differentiates Equation (6):

q

(Value of

Figure 5.1



Rearranging,

cj = ; Af(k) + A,/‘(k) i
df  (k)dk $-)

1
$

Since from (6),  4  = A&?), and from (7),
df(k)  k rk
dl\f(li)=y=s

s being the share of profit in gross output, we can
write
g-A-/i+J1 (81Y

Equation (8) is derived from the assumptions of
a constant returns to scale aggregate production
function, with distribution determined by mar-
ginal productivity rules. Equation (3),  de-
rived earlier from an identity and therefore
always true for  any production and distribution
behavior, is mathematically identical to (8).
It follows therefore that A/A  = B/B  = [(l -
s)  $/+c,  -I (s)r:/r,];  t h a t  i s ,  Solow’s  m e a s u r e  wf
technical change is merely a weighted average of
the growth rates of the wage rate, w  and the rate
of profit, r.

Solow’s  data provide him with a series for
gross output per worker q,  capital per worker k,
and profit share s,  for the United States from
1909-1949. From this data, he calculates the
rates of change (i/q and k/k,  and using these
rates along with the data for the profit share s,  he
derives a series for k/A = cj/q - s&/k.

To Solow,  the series for A/A  represents the
rate of change of technology; since a scatter dia-
gram of A/A  on k shows no apparent correla-
tion, he concludes that technical change is es-
sentially neutral. By setting A(0) = 1, he is able
to translate the rate of technical change A/A  into
a series for A(t), the shift parameter.’ Finally,
since by definition y = A(t)f’(k),  he is able to
combine his derived series for A(t) with his
given series on y to derive the underlying pro-
duction function f(k) = q/A(t).

Plotting f(k) versus k, Solow  gets a diagram
with noticeable curvature, and notes with obvi-
ous satisfaction that the data “gives a distinct
impression of diminishing returns” (Solow,
1957, p. 380). In fact, Sulow  finds  lhis underlying
production function to be extremely well repre-
sented by a Cobb-Douglas function:

Inf(k)  =  - .7LY  +  .353 In  k (K” =  .9992) ( 9 )
Given our preceding analysis in the section

on laws of algebra, it is not difficult to see why
Solow’s  results turn out so nicely. We know for
instance that his data exhibit roughly constant
shares, and the residual term B/B = A/A  is un-
correlated with k. From purely algebraic consid-
erations, therefore, one would expect the data to

be well represented by the functional form in (5),
4 = B(t) c,,kp,  a form which is mathematically
identical to a constant returns to scale Cobb-
Douglas function, with neutral technical change
and “marginal products equal to factor re-
wards. ” In fact, the algebra indicates that
Solow’s  underlying production function should
be of the form:

.f(k)  = coka (10)

In  f(k) = In  co  + p In  k (104
,!3 is of course the (roughly) constant share and co
is a constant of integration which depends only
on the initial points qo,  ko,  of the data. Solow
uses  the  years  1909-1942 in his ~eg~c;ssiurls,  ard
for these years the average profit share s = p =
.35.* Moreover, since in any period t,  q1  =
R(r) coklfi  from Equation (6),  in period t - t,  we
may write q,  = B(0) cokoP,  which gives us
In co  = In y.  - In B  (0) - pin  ko.  For Solow,
this residual B(t) represents the shift parameter
A(t) (compare Equations (3) derived from an
identity, and Equation (8) derived from So-
low’s assumptions), so that B(0) = A (0); as
mentioned earlier, he takes A(0) = 1.  From
Table 1, p. 315 of his article, we get q.  = .623,
k, = 2.06, which when combined with B(0) =
A(0) = I, gives In co  = - 0.725.

Thus, on purely algebraic considerations one
would expect Solow’s  underlying production
function to be characterized by

lnJ’(k)  = - .725  + .35  In  k (11)
This, of course, is virtually identical to

Solow’s  regression result, equation (9),  as it
should be,fhr  it is a law of ulgobru,  not a law of
pvodmtion!

The humbug production function. The analysis of
the laws of algebra led to the conclusion that un~
production data  series y,  k whatsoever, ccln  be
represented NS being genemted by u Cobb-
Douglas production fimction  having  neutral
technical change and satisfying marginal produc-
tivity “rules,” so long as shares are constant
and the measures of capital and labor such that k
is uncorrelated with  B/b.  It is possible to illus-
trate the generality of the above result by means
of a numerical example. Consider, for example,
an economy with tht;  wutput-irlpul data  illus-
trated in Figure 5.2 and having the same profit
share as in Solow’s  data for the United States.

The Humbug data set gives us a series for 4, k,
and s,  from which we can calculate rates of
change 4/q  and k/k. From these, in turn, we
derive B/B = 4/q - s(k/k).  (The calculations
appear in Figure 5.5 .)

Plotting B/B on k gives us a scatter diagram
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f-w  the+?  years, tlw awrage  p-d-if  share is ‘R =
.34.  Moreover, since y.  = SO, k, = 2.00, and
B(0) = 1.0 for Humbug data, we would  expect
the constant term to be In cg  = In y.  -
fn  B(O) - p in k. = -0.459.”  Algebraic consid-
erations therefore tell us that the constant term
will be In I’*  = -0.459 and the slope  ~3  = .34.
The actual regression of flc;)  on k, presented
below, gives virtually identical results.

J-(k)  =  - 0 . 4 5 3  4-  .34  ln  k a2  = -993) ($2)

The function B(r) is of course much more trou-
blesome. A simple glance at Figure 5.3 tells US
that no linear or log-linear function will suffice
for a numerical approximation. Nunetheiess,
even in this case a fair approximation is pos-

(Hz  = .82;  corrected for  degrxes  of free&m,  K’ =
A%*  JII

Figure 5.3
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Figure 5.4

Combining these two fitted functions, one ar-
rives at a numerical specification for even the
Humbug data (Table 5. I)!

Fisher’s simulation experiments. Earlier, I men-
tioned Franklin Fisher’s extensive (and expen-
sive) simulation experiments, in which he finds,
to his surprise, that aggregate Cobb-Douglas
functions seem to “work” for his simulated
economy even when the theoretical conditions
for such an aggregate function are carefully vio-
lated, so long as the particular simulation run
happens to have roughly constant wage (and
hence profit) shares (Fisher, 1971, p. 306).

It is worth noting at this point that what Fisher
means by aggregate production functions work-
ing, is not simply that they give a good fit to
gross output Q(t)  or gross output per worker
q(t). but also that the estimated marginal
products of labor, and presumably of capital,
closely approximate the actual wage and profit
rates, respectively (Fisher, 1971).

1 have already demonstrated in section on the
laws of algebra why in general an aggregate
Cobb-Douglas may be expected to work, in the
sense explained earlier, for data which ~eflecl
constant wage shares. In this section, however,
it will be shown that even Fisher’s massive com-
puter simulation is in reality only an application
of the laws of algebra.

The stl-llcturv ctf  the sim~llation.  Fisher’s simu-
lated economy consists of N industries, each
producing the same type of output Q, using
homogeneous labor L, but its own distitlct  type
of machine stock Ki. Thus Qi  and Qj  are both
quantities of the same good, produced by indus-
tries i and j, respectively, whereas Kj  and Kj  are
stocks of different types of machines.

by a microeconomic
function:

Cobb -Douglas production

Qt(t) =  Ai(t) [Lt(t>lm  [Ki(t>ll-m
where i = 1, . . . , N (14)

(The (Y~  are constant over time, but in general
A,(t), L,(t),  and K,(t) are not.)

At any instant of time, the total stock of labor
L(t) in the economy is given. The basic proce-
dure followed in the model is to allocate this
given supply among the existing industries so as
to equalize the industry marginal products of
labor (MPLi =  MPLj  = MPL): this of course
yields the maximum aggregate output Q(t) =
C;:,QAt).

In general, the marginal product of a Cobb-
Douglas function is MPLi = ai[Qi(t)/Li(t)].‘”
Since these are all equalized for the various in-
dustries to a single ievel, we can
common level by w(t)  and write:

Qi  (t)MPLi = CijL,(t)  = W(t)

denote this

(15)

w(t)  represents the “imputed rental” (uniform
wage rate) of a unit of labor, so that the wage bill
in the ith  industry is:

(16)
Thus, the aggregate wage bill is:

w(t)L(t)  = 5 w(t)L,(t)  = i alQl(t)
I=1 t=,

so that the wage share in total output Q(t) =
CF=, QJt)  is:

wage share = (17)

Finally, since Q,(t) is the gross output of the ith
industry, and w(t)  L,(t)  = (Y; Q,(t) its wage bill,
the difference between the two, the gross promEach industry is assumed to be characterized



Table 5. I. Humblrg  data

Year

Actual
share of
property
income

“Humbug”
output per
worker

“Humbug”
capital per
worker

s 4(f) 41) k/k B/B B(f) j(k)

1 9 0 9 0.335 0.80 2.00
1 9 1 0 0.330 0.70 2.00
1911 0.335 0.60 2.00
1 9 1 2 0.330 0.70 2.00
1913 0.334 0.70 2.10
1 9 1 4 0.325 0.70 2.20
1915 0.344 0.60 2.20
1 9 1 6 0.358 0.80 2.20
1917 0.370 0.80 2.30
1 9 1 8 0.342 0.60 2.30
1 9 1 9 0.354 0.60 2.40
1 9 2 0 0.319 0.60 2.50
1921 0.369 0.70 2.50
1 9 2 2 0.339 0.80 2.50
1 9 2 3 0.337 0.60 2.60
1 9 2 4 0.330 0.80 2.60
1925 0.336 0.75 2.65
1 9 2 6 0.327 0.70 2.70
1 9 2 7 0.323 0.75 2.75
1 9 2 8 0.338 0.80 2.80
1 9 2 9 0.332 0.60 2.80
1 9 3 0 0.347 0.60 2.90
1931 0.325 0.60 3.05
1 9 3 2 0.397 0.70 3.05
1933 0.362 0.70 2.90
1 9 3 4 0.355 0.80 2.90
1935 0.351 0.80 3.05
1 9 3 6 0.357 0.70 3.05
1 9 3 7 0.340 0.80 3.15
1 9 3 8 0.331 0.60 3.15
1939 0.347 0.60 3.25
1 9 4 0 0.357 0.60 3.35
1941 0.377 0.80 3.35
1 9 4 2 0.356 0 80 3 60
1943 0.342 0.80 3.45
1 9 4 4 0.332 0.60 3.45
1945 0.314 0.60 3.60
1946 0.312 0.70 5.w
1 9 4 7 0.327 0.70 3.55

-0.125 0.000 -0 .125
-0.143 0.000 -0 .143
+O. 167 0.000 +O.  167

0.000 +0.050 -0.017
0.000 0.048 -0.016

-0.143 0.000 -0.143
+0.333 0.000 +0.333

0.000 0.045 -0.016
-0.250 0.000 -0.250

0.000 0.044 -0.015
0.000 0.042 -0.015

+ O .  1 6 7 0.000 +O. 167
+ o .  1 4 3 0.000 + o .  1 4 3
-0 .250 0.040 -0.264
+0.333 0.000 +0.333
-0.063 0.019 -0.069
0.067 0.019 -0.073

+0.071 0.019 +0.065
+0.067 0.018 so.061
-0.250 0.000 -0.250

0.000 0.036 -0.012
0.000 0.052 -0.018

+ O .  1 6 7 0.000 + O .  1 6 7
0.000 -0.049 -I 0.019

+ o .  1 4 3 0.000 + o .  1 4 3
0.000 0.052 -0.018

-0.125 0.000 -0.125
0.143 0.033 + O .  1 3 2
0.250 0.000 -0.250
0.000 0.032 -0.011
0.000 0.031 -0.011

+0.333 0.000 -to.333
0.000 0.070 -0.026
0 000 -0.042 +0.015

-0.250 0.000 -0 .250
0.000 0.044 -0.015

+O.  I67 0.000 + O .  1 6 7
U.UW -0.014 +0.004
- - -

1 .ooo 0.800
0.875 0.800
0.750 0.800
0.875 0.800
0.860 0.814
0.846 0.826
0.725 0.828
0.965 0.830
0.948 0.843
0.710 0.845
0.700 0.857
0.690 0.870
0.805 0.870
0.921 0.869
0.678 0.885
0.902 0.887
0.810 0.893
0.780 0.897
0.830 0.903
0.880 0.908
0.660 0.908
0.652 0.920
0.641 0.935
0.74% 0.335
0.764 0.916
0.874 0.916
0.860 0.930
0.752 0.930
0.852 0.940
0.638 0.940
0.633 0.948
0.626 0.960
0.843 0.950
0.820 0.975
0.832 0.964
0.624 0.964
0.614 0.978
0.717 0.975
0.721 0.970

in the ith industry, is treated as the “imputed chine being a different type. An index of ag-
rental” of its unique machine stock K,(t). De- gregate  capital has therefore to be constructed,
fining this gross profit (imputed  machine  rental) and i t  is  known that  in gcncrnl  any such index
as 7rTT2  (t), we have: will  violate  the s t r ic t  condit ions under  which

77-,(t)  = (1 - dL?,(Q the microeconomic Cobb-Douglas production
= gross profits in lth industry (18) functions can bc theoretically aggregated into

a macroeconomic Cobb -Douglas production
Since output Qi(t)  and labor L,(t) are homoge- function (Fisher, 1971, pp. 307-08). On the
neous across industries,  their  respective ag- basis of aggregation theory, therefore, one would
gregates are derived by simple addition. But not expect the macroeconomic variables in this
since each industry has a uniy~e  type of ma- simulated economy to behave as if they were
chine, an aggregate  capital <trick  rmnclt  he genemted h y  2 rnhh-TJnllglss  fllnctinn,  e v e n
derived by adding machines together, each ma- if aggregate shares happen to remain roughly



constant over time. That, of course, is the rea-
son for Fisher’s surprise at his results.

Fisher chooses to construct an aggregate
index in two steps. First, he runs the model
economy over its 20-year period, from which he
gets the gross profits ri(t)  of any given industry,
for each of 20 years. Similarly, over each of the
20 years he knows the machine stock K,(t) in the
same industry: the ratio of the 20-year  sums of
these two is the average rate of return in the ith
industry:

ri = (g r*(f)  / goKiCf))

= 20 year average rate of return
in ith  industry (19)

The units of each average return ri are output
per machine type i. Thus Fisher can use these ri
in any one period t to aggregate the individual in-
dustry machine stocks into an aggregate index of
c.dpital  J(l).

J(t) = 5 J&) = 2 r,K,(t) (20)
2=1 i=l

It is useful to note that in the above expression
the I-~  are nut functions of time, since they repre-
sent average rates of r e t u r n  over  t h e  w h o l e

20-year period.

The ron.stunc*y  oj’ rtlngc shnres.  From Equation
(19),  the wage share is

wage share = 5 a,  eiO
i=l r IQ(f)

Now, as Fisher notes, since the parameters a+
are independent of time, the wage share will be
roughly constant over time only if the relative
outputs Qj(t)/Q(t)  are roughly constant over
time (Fisher, 1971, p. 321, footnote 21). Let us
denote these roughly constant relative outputs
by Pi, and the constant wage share by (1 - s),
the lack of time subscript denoting their con-
stancy:

Qz (r)-z
Q(t)  pi (21)

(1 - s)  = J$$) G 5 aipi (22)
i=i

In each industry, the wage bill, as derived in
Equation (17),  is ~‘(f)&(t)  = aiQi(f). From (22),
the aggregate wage bill is ~)(f)L(t)  = (1 -
s)Q(t),  and dividing one by the other, we get:

L,(t) Q,  Qdt) %Pi----~--EII

L(t) 1 - J (2(t) - I - . P (23

Finally, to prepare us for the last step, we
need to note that the rough constancy of relative
outputs Q&,/Q(  0 aud relative employment

L,(t)/L(t) implies that each firm’s output and
employment grow at roughly the same rate. That
is, dropping time subscripts and denoting time
derivatives by dots: l3

(24)

Algebraic  cunsifiercrtiolls.  It is the central result.,
of this paper that gillen constant shares, any ag-
gregate data Q , K, L whatsoever can be
described by a function of the form Q(t) =
B(t)cJPL’+,  providing the residual B/B  is
soIely a function of time. What we must there-
fore do for Fisher’s experiments. in order to see
why aggregate Cobb-Douglas functions work
for them, is to examine this residual B/B.

By definition, from Equation (3)

Ilcrc,  y = Q/t, and kK/L  = J/L  >ilx:t: Fisher’s
index of capital is denoted by J. Thus Q/q =
Q/Q - i/L,  and K/K = j/J  - i/L and:

B Q L ,L,,&- - -
B=e L J L

(25)

Since s and 1 - s are (roughly)~on.~tant  profit
and wage shares, respectively, we need only
examine the rates of change of WI, J(t),  and-
Q(f).

The first is easy. In all of his simulations,
Fisher specifies that “labor grows at an average
rate of 3% trend” with small random deviations
from the trend (Fisher, 1971, p. 309). Ignoring
the small random deviations then,

L z=z  43
L

(26)

The growth rate of the aggregate capital index
J(t) is a bit more complicated. In Equation (20)
we defined

J(t) =  2 J,(t) = i r;zc,(t)

where the ri  are constant over
tiating this with respect to time,

= i [r&(t)]  y &)
i=l 1

= 5 Ji&)  5,

i=l I

Dividing through J(f).  we get:

j dJ(t)  1---=I
7 = Lit  J(t)

time. Differen-



During all his simulations, Fisher assumes that
each capital s tack  K,(t) grows at an essentially
constunt rate one which in general differs from
industry to industry. l4 Thus,

and this in turn implies

(27)

(28)

Therefore j/J is a weighted average of the pl1,
with weights which sum to one, since J(t) =
XFL,  Ji(t).  (This type of weighted average is
known  as a convex combination, and implies
that j/J will always be between the largest and
smallest pi1 .)

Finally, we come to the growth rate of ag-
gregate output Q(t)  = C$L1  Q,(t).  From Equation
(14),  we know Q[(t),  so

Q(t) =  5 Q;(t) =  f, A,(t)[Li(t)lRIK,(t)]l-”
1=1 t=1

From this, we can derive Q/Q:  l5

Of the terms in expression (2?), we a!ready
know that Qj/Q  s p,.from  (21),  L;/Li  z L/L E
.03 from (24),  and Ki/Kj  z pi1  from (27). To
this, we need only add the fact that in general,
ignor ing smal l  random cleviations,  Fisher as-
sumes that the shift parameter Ai grows at an es-
sentially constant rate, which differs from in-
chlrtry  to industry. l6

(30)

All of this gives

But C;i,,  aipi  = 1 - s = constant wage share,
from (22). So

N

f s z1 YIPI + $ (1 - cq)p$*1  + .03(1  - .5) (31)
2=1

Combining the expressions for i/L,  j/J, and
o/Q,  we return to the all important residual B/B
of equation (25);

Given that the constant wage share I - s =
&YIzl  CV,P~ we can write the profit share s = 1 -
Z$Y!~  aipf.  But by definition pi  = Qi/Q,  SO that

~ pi = ~ Qi/Q  = 1
1=1 2=1

Thus,
M N .v N

s = c p,  - 2 sip,  = x (1 - a, Ipi = c  as,,
Wl i=l 2=1 i=1

where s, = (1 - ai)pi. From this, we at long last
get

!$g YslPi  + J i P
i=l

i&., 11 [: - $1 (32)

in which It is important to note that the terms
si/s and Ji(t)/J(t)y  when summed over i, each
sum to I.

Lurct*s  of ~~lgehru  crnd  1~~~~s  of simulution.  In the
expression (32) for B/B the basic structural
parameters are pi,  and yi,. Of these, pi,  repre-
sents the rate of growth of the i’”  machine stock
over any given simulation run, whereas yi, rep-
resents the rate of technical change in the ith  in-
dustry. (Since the ai are constant over any given
run, changes in the shift parameter Ai repre-
sent the only possible technical change in any in-
dustry.)

Fisher partitions his simulations into two
basic groups. In the first of these, which he calls
“Hicks experiments,” he sets all PI1  = 0. Thus,
in each of these experiments, there is technical
change (yil # 0) but no growth in the size of the
machine stock (pi,  = 0). Under these condi-
tions, R/B reduces to a constant over time.

i-2 yj,pi  =  hI (a constant over time) (33)
1=1

Thus, for Hicks experiruerlt~,  writ  can expect
from purely algebraic considerations that

In B(t) =  on  + b,t (34)

where u0 is a constant of integration.
From the laws of algebra (Equation 5),  we

know that in general if B/B is solely a function of
time, any data associated with constant shares
s z p can be represented by the functional form
bclomr  (since Fisher uses J as an index nf capital,
what we previously called k = K/L is now

j = (J/L): y = B(t)c,jR

Taking natural logs,

(5)



In q = In B(t) + In (‘0  + /3 1n.j p In j = (a0  + In c,J  + p In j and combining the
= (rro  I In co)  I 6, I p  In j constant  terms into a single constant ho

and combining the constants into. a single con-
stant ho,  we get

In 4  = b0  + b,t + p  Inj (35)

What we have shown therefore is that for
Hick,!  rqwrimenrs, purely mlgehraic  (as opposed
to econometric) cwnsidercrtions  lead us to the
conclusion that whenever shares are (roughly)
constant Fisher’s aggregate data can be gen-
erated by what qpe~4rs  to be a Cobb-Douglas
“production’ ’ function with a constant rate of
technical change and a marginal product of labor
equal to the actual wage.

This is precisely the  sesult  Fisher gets .fijr  his
Hicks experiments: for this set of experiments,
the functional form which repeatedly works the
best (in the sense that the estimated marginal
product of labor most closely approximates the
actual wage) is one which assumes constant re-
turns to scale and a constant rate of technical
change . I7

We now turn to the second set of experiments,
what Fisher calls his “Capital experiments,” in
which all yi, = 0. In this set of experiments,
therefore, there is positive or negative growth of
the ith machine stock (pi,  # 0) but NO technical
change (ai1  = 0). Equation (321,  the genera1 ex-
presslon  for  the residual,  now becomes:

(36)

In Equation (36) each term in the brackets is a
convex combination (a weighted average whose
weights sum to one) of the &,  so that each term
lies between the largest and the smallest pi,. One
would therefore expect the difference  of these
terms to be close to zero; in addition, since the
constant wage share I - s = Cp&  C;Y&  is itself a
convex combination of the parameters ai, it it-
self will be within the  range of rhesv  parame-
ters;ls since the unweighted average of the CY, is
0.75, the profit share s will be roughly around
0.25. Given  11~1  11~ turn  irl tht:  LJI~&G~>  is likly
to be small, multiplying it by s = .025  will yield
a number even closer to zero. In capital experi-
ments algebraic considerations would therefore
lead us to expect:

so that
I n B = uo, where cl0 is a constant (313)

In setting this result into the general functional
form of Equation (5) 4  = B(r)c,i”  and taking  nat-
ural logs of both sides, In 4  = In B(t) + In co  +

lnq ZX~~+ plnj

For the capital experiments, therefore, purely
algebraic considerations lead us to expect that

(39)

Fisher’s data can be represented by what up-
pec~u~  to  be a Cobb-Douglas production func-
tion with a constant level of technology and a
marginal product of labor equal to the actual
wage. Once crgain  this is precisely the result
Fisher  gets .fb;,r  his cupitcll  experiments. l9

It is important to note that Fisher himself
never presents the exact regression results in-
volved (an understandable omission considering
that there were a total of 1010 runs of this simu-
lated economy, each run covering a 20-year
period). Instead, he tells us only that the best fits
to the aggregate data were derived from an equa-
tion of the form In q  = 6, + h,t  + plnj  for
Hicks experiments, and one of the form In 4  =
b,  +  p In j for cnpital  experiments. To Fisher
this result comes as a surprise. But it should not,
GUI  a~ wt: have jusl  se&,  Fisher’s complicated
and expensive experiments have merely redis-
covered the laws of algebra.

Cross-section aggregate  production ,filnctions.
The direct analogy to constant shares in time
series is the case of uniform profit margins b-of
its per dollar sales) in cross-section data. Using
the subscript i for the ith industry (or firm), and
defining fl = si  = rikf/‘qi  as the uniform profit
margin, we can rewrite Equation (3) as

(40)

Then, so long as the term in brackets is uncor-
related with dkj/ki,  the above equation is alge-
braically similar to a simple linear regression
model yi  = bxi  + ui, with the term in brackets
playing the part of the disturbance term ui.  Ob-
vlously,  lor  any data in which  the bracketed
term is small and uncorrelated with the depen-
dent variable dkj/ki,  the “best” fit will be a
cross-section Cobb-Douglas production func-
tion with constant returns and factors paid their
marginal products.

There are still other ways in which one may
explain the apparent success of a Cobb-Douglas
in cross-section studies, the best single refer-
ence being Phelps Brown’s (1957) critique. In 5
subsequent note, Simon and Levy (1963) show
that any data having uniform wage and profit
rates across the cross section can be closely
approximated by the ubiquitous Cobb-Douglas
function having “correct” coefficients, even
though the data reflect only mobility of labor and
capital, not any specific production conditions.



Once again, it would seem that the apparent
empirical success of the Cobb-Douglas function
having “correct” coefficients is perfectly con-
sistent with wide varieties of data, and cannot be
interpreted as supporting aggregate neoclassical
production and distribution theory.

Summary and conclusions

It is characteristic of theoretical parables that
they illustrate the  furdurrwr~tuf  truth of  a para-
digm, truths which more developed theoretical
structures may modify and elaborate, but cannot
undermine. In the neoclassical progression of
parables from simple exchange to capitalism as
the final solution to Man’s “natural” greed, one
central theme which emerges right in the begin-
ning is the conception of equilibrium prices as
“scarcity prices:” relative prices which reflect
the relative scarcity of commodities.

In their most developed form, neoclassical
parables have sought to present the notion of
scarcity pricing as an explanation of the distribu-
tion of income between workers and capitalists.
Here, the task is to portray a capitalist economy
in such a way that the wage and profit rates may
be seen to be Lhe  scarcity prices of labor and
capital, respectively. But for this to be even a
logical possibility, it is at the very least neces-
sary that the wage and profit rates behave as if
they were scarcity prices - i.e., that the profit
rate fall as the capital-labor ratio rises, and the
wage rate fall as the labor-capital ratio rises.
This correlation is minimally necessary for the
internal consistency of the parable (though of
course its existence would hardly justify the im-
plied causation).

Alas, the grand neoclassical parables have
fallen on hard times, and after repeated demon-
strations of their logical inconsistencies, they
have been abandoned by the high-brows of the
theory; not without regret, though, for as Sam-
uelson so insightfully notes, within the parable
“the apologist for capital and for thrift has a less
difficult case to argue” (Samuelson, 1966).

“If all this causes  hcadachcs for those nos-
talgic for the old time parables of neoclassical
writing, we must remind ourselves that scholars
are not born to live an easy existence We rnllst
respect, and appraise, the facts of life” (Sam-
uelson, 1966).

Not everyone was ready to give up the old
time parables though, and those who chose to ig-
nore the previously mentioned facts of life
sought succor - where else? - in the “facts.”
The “real world,” whose vulgar intrusions neo-
classical theory had in the past so carefully
avoided, became its last refuge. Facts, after all,
are always better than facts-of-life.

And what are these facts? Simply, that again
and again, aggregate Cobb-Douglas production
functions work - that is, they not only give a
good fit to aggregate output, but they also gener-
ally yield marginal products which closely
approximate factor rewards. Since the aggregate
production function is the simplest form of
the grand neoclassical parable, its apparently
strong empirical basis has often been taken as
providing a good measure of support for the old
time religion, regardless of what the theory says,

The main purpust:  of this &apt~r  has bt;c=u  to
show that these empirical results do not, in fact,
have much to do with production conditions at
all. Instead, it is demonstrated that when the dis-
tribution  data (wages and profits) exhibit con-
stant shares, there exist broad classes ofpro&c-
tion data (output, capital, and labor) that can
always be related to each other through a func-
tional form which is mathematically identical to
u Cobb -Douglas “production jknction”  with
constant “returns to scale,” “neutral technical
change, ’ ’ and “marginal products equal to
fat tor revvurds.  ’ ’

Since this result is a mathematical conse-
quence of any (unexplained) constancy of
shares, it is true even for very implausible data.
For instance, data poinrs  that spell out lhe word
“HUMBUG” were used as an illustration, and
it was shown that even the humbug economy
can bc represented by Cobb-Douglas produc
tion function having all the previously men-
tioned properties.

Similarly, we have examined Solow’s  famnuq
paper on measuring technical change; and here
too it is shown that the underlying production
function which he isolates, by removing the ef-
fects of technical change, can be algebraically
anticipated, even down to the fitted coefficients
of his regression.

Next, Franklin Fisher’s mammoth simulation
experiments are examined and once again it be-
comes clear that the laws of algebra can antic-
ipate the laws of simulation from the structure of
the experiments alone.

Lastly, in the final part of this chapter, the
analysis is extcndcd  to provide a simple  cxplana-
tion for cross-section aggregate production func-
tions. The overall impact of these discussions, it
is hoped, will be to demonstrate that the renlity
to which the neoclassical hangers-on clutch so
desperately is as empty as their own abstrac-
tions.

Postscript

The point of this chapter is to demonstrate that
as long as distributive shares are constant, it is
an algebraic law that the Cobb-Douglas func-



tion “fits” almost any data. Hence, Solow’s
paper and the Humbug data stand on the same
footing.

Solow  has recently claimed that all along the
intention of his 1957 paper was to “yield an
exact Cobb-Douglas and tuck everything else
into the shift factor” (Solow,  1974, p. 121). But
his own printed words give quite a different
impression: in the original paper, after he has
derived the so-called shift factor A(t), Solow  ex-
pressly states his intention to “discuss the shape
of f(k,  I) and reconstruct  the (underlying) ag-
gregate production function” (Solow,  1957, p.
317). To this end, he constructs a graph of f(k)
versus k, noting with obvious satisfaction that
in spite of “the amount of a priori doctoring
which the raw figures have undergone, the fit is
remarkably tight”  (Solow.  1957. p. 317). giving
rise to “an inescapable impression of curvature,
of persistent but not violent diminishing re-
turns” (Solow,  19.57, p. 318).

If, as Solow  now claims, he knew all along
that the underlying production function would
be a Cobb-Douglas, then why bother “recon-
structing” it? Why the surprise at the tightness
of fit and the “inescapable impression of curva-
ture”? Why does Solow  need regression analy-
sis to “confirm the visual impression  of dimin-
ishing returns . . .” (Solow,  1957, p.  319). If
Solow  had indeed understood his own method,
he should have known that regardless of the
amount of a priori doctoring of the data, the laws
of algebra dictate that the fit of f(k) versus k
would be very tight as well as being inescapably
curved. But it is hardly necessary to rediscover
these algebraic artifacts by means of graphs and
regressions.2o

Having just said that his method and his edu-
cation lead him to conclude that even the
Humbug economy is neoclassical, Solow  next
asserts the very opposite. With the help of Sam-
uel L. Myers, he runs a regression of the form
In 4 = a, + alt  + b In k  on the Humbug data,
and finds to his obvious delight  that this lcads
not only to a very poor fit but also gives rise to a
negative coefficient for In k. The moral seems
clear: production functions do not “work” for
the Humbug data, whereas they do for real data
(Solow,  1974, p. 121).

But once again, his method and education be-
tray him, The laws of algebra show that almost
any production data associated with a constant
profit share p could be cast in the form Q =
B(t)kP.  The Humbug data was an illustration of
this, and it was sufficient for my purpose in the
original paper to show that even in this case the
“underlying” function f(k)  was extremely well
fitted by the Cobb-Douglas formf(k)  = kP(R2 =
.993)  and that the so-called shift factor B  was
solely  a function of time.  Hcncc, cvcn  Humbug

‘L
.  .  . the core of the theory of a private owner-

ship economy is provided by the theory of ex-
change” (Walsh, 1970, p. 159).
Garegnani in fact does not state it this way. He
shows that the necessary and sufficient condition is
that the wage-curves all be straight lines, and
shows that this in turn is true when all industries
have the same capital-labor ratios, i.e., when
prices are proportional to labor values (Garegnani,
1970, p 421)
Q(t) = value of output; K(t) = value of the utilized
stock of capital; L(t) = employed stock of labor;
t = time.
I thank Professor Luigi Pasinetti for having pointed
this out in his comments on an earlier version of
this paper.
R. R. Nelson gives  a summary of subsequent
refinements (Nelson, 1964).
“In order to isolate shifts of the aggregate produc-
tion function from movements along it” (Solow,
1957, p. 314).
The discrete equivalent for A/A  is AA/A, where
AA = A(t + 1) - A(t). Thus A(t + 1) = A(t) [l +
AA/A]; in 1909, r = 0, and by setting A(0) = 1,
Solow  derives a series for A(l), A(2) . . . , from
the data on A/A.
Since Solow’s  calculations contained an arithmeti-
c a l  error. the Doints rcprcscnting the  ycnrs- I-----  _

data would be consistent with a neoclassical pro-
duction function having “neutral technical
change” and “marginal products equal to factor
rewards”.

Obviously, given that the underlying func-
tion f(k) was numerically specified by the laws of
algebra (Equation (12) and note 9, in this
chapter), all that would have been necessary for
a complete numerical specification was a fitted
function for B(t). However, since such a fitted
function was not necessary to the logic of my
argument, I was content with mcrcly gl-ayhing
B(t) versus time, as in Figure 5.3.

A glance at Figure 5.3 is sufficient to indicate
that no simple linear or log-linear function will fit
B(t). And yet this is precisely the form  that
Solow  uses in his regression, 21 He naturally gets
a very poor fit. How clever.

In this version of the paper, for the sake of
completeness, I do actually specify a fitted func-
tion for B(t), with an R2 = .82 (Equation 13).
But the logic of the argument does not require
this step; it only requires that the so-called shift
factor be a function solely of time: there is
nothing in neoclassical theory, no law of pro-
duction or of nature, which requires B(t) to be
linear or log-linear. Struggling under the weight
uf  thci:il  bag  UT  ~uuls,  Svlvw  ancl  Myers seem to
have forgotten that linearity is merely a conve-
nient assumption whose applicability must at all
times be just$ed.  not merely assumed.

Notes
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10

11

12

13

1943-1949 clearly lay outside the range of any hy-
pothesized curve. After expressing some hesi-
L~IIC~:,  Suluw lcdves them out of his regressions
(Solow,  1957, p.  318).
The deviation of the numerical value of the con-
stant term is explained on pp. 20-21 of Solow’s
1957 paper.
I wish to thank Larry Heinruth and especially Peter
Brooks, for the time and effort expended in
deriving this fitted  function. Two slept  welt:  in-
volved in the fitting. First, a two-year moving
average B(t)  was constructed from the data for
B(t), by means of the formula B(t)  = [B(r) +
B(t  + 1)]/2  in which the year 1909 represents t =
1, 1910 by t = 2, etc. Second, the function B(r)  of
Equation (13) was fitted to this moving average
B(t), with  a KZ  = .82.
Since the fitted function has K  = 16 parameters to
it, and since there are T = 38 data points in the
moving average B(t),  the R2 corrected for degrees
of freedom is (Goldberger, 1964):

R2=RzT  “,-, (1  - R’)

= .82 - g (.18)  = .68

By the  definition MPLi  = aQi(t)/aL,(r).  Applying
this to the expression for Q&t)  in Equation (14)
yields MPLi  = ai[Qi(t)/L,(t)].
From Equation (21),  Q*(t)  = piQ(t),  where pI is
constant over time. Thus

dQ,(t) dQW
- =  P i  d*dt

and

dQ,(d 1--= dQ,(t)  1
” dt pie,(t)

de(t) 1--=--
dt QiIt> dt  QW

Similarly for employment from (23).
Fisher  aqqurnes  In K,(t)  = &,,  + &t  + (small ran-
dom deviations). Ignoring the small deviations, and
differentiating gives (Fisher, 1971, p. 309)

W(t)  1
d t  K , ( t )  = “I

O(t) = c A,(tNL,Wla  [KWll-a
i=l

Dropping the time subscript, and differentiating,
N

Q = C [A, L,”  K:-”  + Ai(aiL,)LP-‘Kipa
i=l

+ A,Li*  (1 - ai) ki Kf-”  -I

+

1 6

17

18

19

20

21

so that

Fisher (1971, p. 309) assumes In  A, = yiO  + yilt,  so
that (dAi/dt)(  l/A!)  = 7/il.
The function form in Fisher’s equation, (17),  the
best form for Hick’s experiments, is log (Y*/L)  =
CJ  + h loe(.I/r)  + At where his Y-/L  corresponds
to our q and his J/L to ourj. Fisher uses “log” for
natural logarithms (Fisher, 1971, p. 313).
Fisher has two ranges of (Y?:  .7  5 IY,  5 .8, and .6  s
(Ye  5 ,9, in both the unweighted average = 0.75
(Fisher, 1971, p. 309).
The functional form Fisher finds best for Capi-
tal experiments is log(  Y+/L)  = 0 -L h lng(  I/I.)
which, allowing for notation differences, is iden-
tical to equation 5.38 (Fisher, 1971, p.  313).
Yet confronted with the humbug data, Solow  says:
“If you ask any systematic method or any edu-
cated mind to interpret those data usirzg  ~1  produc-
tion ,function  crnd  the rncrrginrll  producti\Vty  rrla-
tiorzs,  the answer will be that they are exactly what
would be produced by technical regress with a pro-
duction function that must be very close to
Cobb-Douglas” (Solow,  1957, p. 121). What kind
of “systematic method” or “educated mind” 1s  It
that can interpret almost any data, even the
humbug data, as arising from a neoclassical pro-
duction function?
Solow  uses the form in y = (lo + u,t  + h In  k;
since the general form under consideration is 4 =
A(t).f(k),  so that In  q = In A(t) + lnf(k),  Solow
has obviously specified A(t) as log-linear: In  A(t) =
a ,  +  Ull.
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